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Abstract
This paper employs higher-order winding numbers to generate Hamiltonian
motion of particles in two dimensions. The ordinary winding number counts
how many times two particles rotate about each other. Higher-order winding
numbers measure braiding motions of three or more particles. These winding
numbers relate to various invariants known in topology and knot theory, for
example Massey and Milnor numbers, and can be derived from Vassiliev–
Kontsevich integrals. The invariants can be regarded as complex-valued
functions of the paths of the particles. The real part gives the winding number,
whereas the imaginary part seems uninteresting.

In this paper, we set the imaginary part to be a Hamiltonian for particle
motions. For just two particles, this gives the familiar motion of two point
vortices. However, for three or more particles, the Hamiltonian generates
more complicated intertwining patterns. We examine the dynamics for the
case of three particles, and show that the motion is completely integrable. The
intertwining patterns correspond to periodic braids; closure of these braids
gives links such as the Borromean rings. The Hamiltonian provides an elegant
method for generating simple geometrical examples of complicated braids and
links.

PACS numbers: 0210K, 4505, 4520J

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Topological invariants have been an essential tool in the study of knots and links. This paper
shows how a particular set of invariants can be used to generate interesting dynamics. In
particular, we will employ higher-order winding numbers from braid theory as Hamiltonians
for particle motion in a plane.

A geometrical braid is a set of curves stretching between two parallel planes. Two braids
can be considered topologically equivalent if one can be deformed into the other by smooth
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motions vanishing at the boundary planes. A topological braid consists of an equivalence
class of geometrical braids. If t denotes the vertical direction, then N braided curves can be
described by functions (xi(t), yi(t)), i = 1, . . . , N . If t represents time rather than a third
spatial direction, then the braid gives us a spacetime diagram of N particles moving in a plane.
In other words, if we look at the motion for some fixed time T then the braid records a history
of the motion for 0 < t < T . Braided spacetime diagrams provide a valuable tool for two-
dimensional dynamics [1–3]. In the time period 0 < t < T two particles labelled i and j will
rotate about each other through some angle θij (T ). The winding number θij (T )/2π gives the
net number of complete turns. All topologically equivalent braids will have the same set of
winding numbers. Winding numbers are closely related to linking numbers. For example, if
the braid is periodic, so that (xi(0), yi(0)) = (xi(T ), yi(T )), then we can join up the endpoints
to form closed curves (e.g. by embedding the braid in the interior of a torus). In this process
the winding numbers become Gauss linking numbers.

The Gauss linking number (for historical details, see [9]) does not detect all forms of
linking. For example, the Borromean rings [10] (see figure 5 below) cannot be pulled apart,
and yet have zero Gauss linking number between any pair of rings. In the early 1950s, higher-
order linking numbers were discovered by Massey and Milnor. These were later shown to
be equivalent by the Porter–Turaev theorem (see [11] for a comprehensive review). Gauss
linking numbers can be studied in the context of physical vector fields such as magnetism and
vorticity [12–15]. Similarly, the higher-order linking numbers can be expressed using vector
fields [16–21]. This makes aspects of knot theory more widely available for use in the physical
and applied sciences.

In 1991, a higher-order winding number was devised for three-braids [22, 23]. For
closed braids, this number reproduced the Massey–Milnor numbers. The three-braid invariant
provides the principal ingredient for constructing the Hamiltonian system described in this
paper.

In 1990 Vassiliev [4] discovered a powerful tool for analysing knot invariants by
considering their extension to curves with double points (i.e. points where a curve intersects
itself). Suppose a knotted curve has n double points. We can remove one of the double points
by turning it into an overcrossing or an undercrossing. Suppose we can calculate an invariant
In−1 defined for curves with n − 1 double points. Then this invariant can be extended to a
new invariant In defined for curves with n double points in the following way: remove one
of the n double points by changing it into an overcrossing or an undercrossing. For either of
these choices of crossing, In−1 can be calculated. Now take their difference: In = I +

n−1 − I−
n−1

where I +
n−1 is the calculated invariant for the overcrossing. Note that the usual knot, link, or

braid invariants are for curves with zero double points, so they are of the form I0. Two I0

numbers must be calculated (and their difference taken) to calculate an I1 invariant. Similarly
two I1 numbers, and hence four I0 numbers, determine an I2 invariant. Thus in general 2n I0

numbers determine an In.
There may not be an infinite series of invariants I0, I1, . . . , however. A finite-type invariant

(now known as a Vassiliev invariant) of order m vanishes for more than m double points, i.e.
Im �= 0 (for some curve), but Im+1 = Im+2 = · · · = 0 (for all curves) [5]. The Gauss linking
number is an order one invariant. Many famous knot invariants such as the Jones polynomial
are also Vassiliev invariants. In 1993 Kontsevich [6] showed that Vassiliev invariants can be
found using an integral formula. In practice, Kontsevich integrals can often be difficult to
calculate, as they involve many terms and require working with special diagrams called chord
diagrams [7]. However, they have provided knot theorists with valuable information about the
general structure of invariants (for a bibliography on Vassiliev–Kontsevich theory, see [8]).
Recently, Willerton [24] showed that the higher-order winding number for three-braids is a
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finite-type (order two) Vassiliev invariant, and showed how to obtain it from the Kontsevich
integral. He also obtained expressions for similar invariants of higher order.

Section 2 reviews the use of complex coordinates for Hamiltonian variables. As we
construct our Hamiltonians from the imaginary part of analytic functions (more precisely,
analytic on Riemann surfaces), complex coordinates are essential. This section proves a
simple theorem, that the Hamiltonian flow follows the gradient of the real part of the analytic
function. The real part supplies the topological data.

Section 3 reviews the Hamiltonian for point vortex motion. This Hamiltonian can be
expressed using the complex logarithm. When this logarithm is extended to a Riemann surface
above the complex plane, it includes the winding number of two vortices as they orbit each
other. Winding number is a first-order Vassiliev invariant.

Second-order three-braid invariants are described in section 4. Symmetries, conservation
laws and integrability of the Hamiltonians derived from these invariants will be discussed.
Conclusions are given in section 5.

It may be useful here to emphasize the distinction between dynamical invariants and
topological invariants when applied to particle motions. A dynamical invariant is a function
f of the particle positions and velocities which is conserved, df/dt = 0. On the other hand, a
topological invariant �(T ) is a quantity calculated from the braided spacetime diagram of the
particle motion between t = 0 and T . Distortions of the braid (away from the Hamiltonian
solution) keeping fixed endpoints at t = 0, T do not change �(T ), hence the term ‘invariant’.
However, at a slightly later time T + δT the Hamiltonian solution will have a slightly different
spacetime diagram, because of the motion during the time δT . Thus �(T + δT ) �= �(T )

in general. In other words, d� (T )/dT �= 0. Perhaps ‘topological quantity’ may be a more
appropriate term for �, as it measures aspects of topological structure which do indeed change
with time.

2. Hamiltonian theory with complex coordinates

Suppose we have an analytic function F(z), or more generally F(z1, . . . , zn) analytic in n

complex variables. What happens if we use the real part of F as a Hamiltonian? As we will
be doing this below, we set the scene by first reviewing complex coordinates, then discuss
Hamiltonians derived from analytic functions.

2.1. Review of complex coordinates

Consider first a one-dimensional Hamiltonian system with coordinate x and its conjugate
momentum p. Let z = (x + ip). The so-called Wirtinger calculus uses a complex number z
and its complex conjugate z as independent variables. In particular, with variables (z, z) the
basis one-forms are

dz = (dx + i dp) dz = (dx − i dp). (1)

The basis vectors dual to these are

∂z = 1
2 (∂x − i∂p) ∂z = 1

2 (∂x + i∂p). (2)

Note that

∂z

∂z
= ∂z

∂z
= 0. (3)
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Recall that the time-derivative of a function f (x, p) induced by the particle motion is
given by the Poisson bracket of f with the Hamiltonian H , df /dt = [f,H ], where

[f, g] ≡ ∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
. (4)

In complex coordinates, let

{f, g} ≡ ∂zf ∂zg − ∂zf ∂zg. (5)

A simple calculation gives [f, g] = −2i{f, g}, so
df

dt
= −2i{f,H }. (6)

For a Hamiltonian function of several variables (x1, . . . , xn) with conjugate momenta
(p1, . . . , pn), we let zj = xj + ipj . Let ∂j ≡ ∂zj , ∂j ≡ ∂zj . The Poisson brackets become

[f, g] ≡
n∑

j=1

∂f

∂x j

∂g

∂p j

− ∂f

∂x j

∂g

∂p j

(7)

{f, g} ≡
n∑

j=1

∂jf ∂jg − ∂jf ∂jg. (8)

2.2. Hamiltonians derived from analytic functions

Suppose that we have an analytic function F(z1, . . . , zn). An interesting thing happens when
we use its imaginary part as a Hamiltonian. In particular, let

F = K + iH (9)

where both H and K are real. From equation (6),
dzj
dt

= −2i{zj ,H } = −{zj , F − F }. (10)

Thus Hamilton’s equations become
dzj
dt

= ∂jF . (11)

Hamiltonian motion, of course, preserves the Hamiltonian itself; i.e. dH/dt = 0. What about
K? After all, since F is analytic in each of its variables K must be related to H by the Cauchy–
Riemann equations. In fact, the motion maximizes the growth of K . To see this, we calculate
the gradient of K and convert it to a vector using the Euclidean metric. This vector turns out
to be the same as the velocity vector of the Hamiltonian motion.

Let the metric line element be ds2 = ds2
1 + ds2

2 + · · · + ds2
n where

ds2
j = dx2

j + dp2
j = dzj dzj . (12)

In complex coordinates the Euclidean metric is block-diagonal with matrices

gjαβ = 1
2

(
0 1
1 0

)
. (13)

Also, in complex coordinates

∇jK =
(
∂jK

∂jK

)
. (14)

If we employ the inverse metric as a raising operator, then we obtain

∇α
j K = g

αβ

j ∇jβK = 2

(
∂jK

∂jK

)
=
(
∂jF

∂jF

)
. (15)
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On the other hand, if we define

Zj =
(
zj

zj

)
(16)

then

dZj

dt
=
(
∂jF

∂jF

)
= ∇α

j K. (17)

In effect, the Hamiltonian flow travels along the gradient of K .
In the sections that follow, the functions F will be functions derivable from the Vassiliev–

Kontsevich integral, where the real part K gives a topological invariant.

3. Two-particle vortex motion

Before considering higher-order winding numbers, we first review Hamiltonians based on the
ordinary two-particle winding number. Consider two point vortices a and b at positions (ax, ay)
and (bx, by). (A review of the point vortex problem appears in [25].) For point vortex motion,
the x and y coordinates are conjugate to each other: for example the conjugate momentum to
ax is ay . The Hamiltonian for vortices of equal (unit) vorticity is

H = − 1

2π
log rab (18)

where rab = a−b. The corresponding Lagrangian is (using a dot to denote the time derivative)

L = 1

2π
log rab + (ȧxay − axȧy) + (ḃxby − bxḃy). (19)

Hamilton’s equations give

(ȧx, ȧy) =
(
∂H

∂ay
,− ∂H

∂ax

)
= 1

2π

(
−ay − by

r2
ab

,
ax − bx

r2
ab

)
(20)

(ḃx, ḃy) =
(
∂H

∂by
,− ∂H

∂bx

)
= 1

2π

(
−by − ay

r2
ab

,
bx − ax

r2
ab

)
. (21)

The two vortices rotate about each other at constant radius; the motion maximizes the
growth of winding number.

As in the previous section, the Hamiltonian is just the real part of an interesting complex
function. Let us extend the logarithm from its principal part to something that lives on a helical
Riemann surface. Define

λab(t) ≡ 1

2π i

∫ t

0

ȧ − ḃ

a − b
dt ′. (22)

Then

H = Im (λab) (23)

and

ȧ = ∂aλab ḃ = ∂bλab. (24)

Suppose we make a spacetime diagram of the two points, with t the vertical direction
extending from t = 0 to some final time t = T . We obtain a simple braid diagram. The
real part of λab records how many times the points have circled each other. In fact, λab is a
topological invariant of braids. Here the invariance is not in time, but to deformations of the
braid which leave endpoints at t = 0, T fixed.
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The topological invariance arises from an application of Stoke’s theorem. If we were
to deform the braid from, say, braid configuration 1 to braid configuration 2, then we would
change λab(T ) by

λab2(T ) − λab1(T ) = 1

2π i

∫
1

ȧ − ḃ

a − b
dt ′ − 1

2π i

∫
2

ȧ − ḃ

a − b
dt ′. (25)

This can be regarded as a single integral over a closed path γ in C × C, where each point on
the path gives the positions of a and b at some time t . Thus

λab2(T ) − λab1(T ) =
∮
γ

ωab (26)

where

ωab = 1

2π i

da − db

a − b
. (27)

The closed path γ bounds a region in C × C. Applying Stoke’s theorem turns the line integral
into a surface integral over this region, of the two-form dω. However, ω is closed (dωab = 0),
therefore λab2(T ) = λab1(T ).

In cohomology theory topological invariants arise whenever you have a form like ωab

which is closed but not exact (not the exterior derivative of a well behaved potential). A closed
form which is exact just integrates to give the values of its potential at the boundaries, which
is often less interesting. Note that ωab looks like dλab; however λab is not well behaved, being
multi-valued.

4. Three-particle Hamiltonian

4.1. Equations of motion

Consider three points a, b and c moving in C. We assume that the points avoid each other;
i.e., a �= b, a �= c, c �= a. Let λ̃ab(t) = λab(t) + λab0 where λab0 is a constant (for example,
λab0 could be chosen as the principal value of log(b(0) − a(0)). The one-form

ψabc ≡ 1
2 ((λ̃ab − λ̃bc) dλ̃ca + (λ̃bc − λ̃ca) dλ̃ab + (λ̃ca − λ̃ab) dλ̃bc) (28)

is the analogy of ω above, and satisfies [22]

dψabc = 0 (29)

so ψ is also closed but not exact. The real part of the integral

�abc(T ) =
∫ T

0
ψabc(t) (30)

provides a second-order Vassiliev invariant associated with Massey numbers [19, 22, 24]. In
analogy with the previous section, we construct a Hamiltonian H = Im �. From (11),

ȧ = ∂a�abc ḃ = ∂b�abc ċ = ∂c�abc. (31)

For example,

ȧ = −1

2

(
(λ̃ab − λ̃bc)

∂λ̃ca

∂a
+ (λ̃bc − λ̃ca)

∂λ̃ab

∂a
+ (λ̃ca − λ̃ab)

∂λ̃bc

∂a

)
(32)

= 1

4π i

(
(λ̃ab − λ̃bc)

1

a − c
− (λ̃bc − λ̃ca)

1

a − b

)
. (33)
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It will be convenient to define

ξ ≡ 1

4π i

(
(a − b)λ̃ab + (b − c)λ̃bc + (c − a)λ̃ca

(a − b)(b − c)(c − a)

)
. (34)

The time derivatives become

ȧ = (b − c)ξ

ḃ = (c − a)ξ

ċ = (a − b)ξ .

(35)

4.2. Constants of motion

Equation (35) immediately gives a constant centre of mass m (zero linear momentum):

d

dt
(a + b + c) = dm

dt
= 0. (36)

The conservation of centre of mass arises, via Noether’s theorem, from the invariance of �abc

to translations. Secondly,

aȧ + bḃ + cċ = 0. (37)

The real part of this equation gives

d

dt
(|a|2 + |b|2 + |c|2) = 0. (38)

The imaginary part gives zero net angular momentum. To see this note that if z = reiθ is a
complex number,

zż = rṙ + ir2θ̇ . (39)

These conservation laws arise from the scaling and rotational symmetries of �abc.
We can also form a conserved quantity from relative positions. Equation (35) gives

ȧ − ḃ = −3(c − m/3)ξ
ḃ − ċ = −3(a − m/3)ξ
ċ − ȧ = −3(b − m/3)ξ .

(40)

Dot with (a − b, b − c, c − a):

(a − b)(ȧ − ḃ) + (b − c)(ḃ − ċ) + (c − a)(ċ − ȧ) = 0. (41)

This gives equations analogous to (38) and (39) in the relative coordinates (a−b, b−c, c−a).
We really only need two relative coordinates, say (a − b) and (b − c), as well as the

centre of mass m, which is ignorable. Thus the translational symmetry brings the Hamiltonian
system down to two dimensions. The scaling-rotational symmetry gives a new conservation
law (41). For a two-dimensional system, the existence of a conserved quantity guarantees
complete integrability.

4.3. Winding number diagrams

Define a phase space or winding number space as in [22,23], which consists of the set of triplets
(Re λ̃ab,Re λ̃bc,Re λ̃ca) (see figure 1). As the points a(t), b(t) and c(t) move according to
the dynamics, a single point Re (λ̃ab(t), λ̃bc(t), λ̃ca(t)) will traverse a path in the winding
number space (see figure 1). The three axes in the figure correspond to the three winding
numbers; the triangular regions shown form part of a plane P = {Re (λ̃ab + λ̃bc + λ̃ca) = 0}.
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Figure 1. Space of winding numbers (Re λ̃ab,Re λ̃bc,Re λ̃ca). The plane P = Re (λ̃ab + λ̃bc +
λ̃ca) = 0 is shown within this space. Hexagonal regions are forbidden. A path is also shown,
corresponding to the pigtail braid of figure 2.

The direction perpendicular to this plane corresponds to all three angles increasing at once,
i.e. uniform rotation of a, b and c. The white triangular regions correspond to physically
accessible combinations of angles. In between are hexagonal regions; a point inside one of
these regions corresponds to an impossible set of angles. Vertices of the triangles correspond
to a, b and c being collinear. The phase point reaches the centre of a triangular region in P
when a, b and c form an equilateral triangle in C. Note that there are infinitely many copies of
the triangular regions, corresponding to winding angles greater than 2π , i.e. different branches
of the complex logarithms.

4.4. Numerical experiments

We use a fourth-order Runge–Kutta code to follow the Hamiltonian motion according to (35).
The initial positions of the points a, b and c are set so that they are collinear, with b in the
middle. Let ρ denote the initial ratio of distances ρ = |b − a|/|c − b|. Thus the initial
positions in the complex plane can be classified according to the single parameter ρ. However,
the Hamiltonian is a function on a Riemann surface above the complex plane, rather than the
complex plane alone thus, to calculate the complex number ξ which appears in (35), we need
to specify the initial values of the winding angles.

For the motion shown in figure 2, we set ρ = 1, and Re λab0 = Re λbc0 = 0,
Re λca0 = 1/2. We plot the result as a spacetime braid diagram (figure 2), and also as a
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Figure 2. Braid and winding diagram for ρ = 1. The initial position (a, b and c collinear with b

in the middle) is shown by the dot in the winding diagram. The net rotation W(P ) of this braid is
zero.

path in the winding plane P . The motion is periodic. Within a period P the braid acquires
exactly one unit of higher-order winding number, i.e. Re�abc(P ) = 1. Note that the winding
space path encircles precisely one forbidden hexagon, in an anti-clockwise sense. In fact, for
any closed curve in P , �abc equals the number of hexagons encircled anti-clockwise minus
the number encircled clockwise [22]. Recall that the winding plane P projects out the uniform
rotation W = Re (λab + λbc + λca). While the motion has zero angular momentum (see
equations (37) and (39)), W can nevertheless change in time. For this braid with ρ = 1,
however, we find W(P ) = 0.

When we vary ρ away from unity, the braid geometry becomes more and more distorted.
However, the experiments show that the topology of the braid remains the same (except for
a uniform rotation: W(P ) �= 0) until ρ ≈ 4.3, where it jumps to a new pattern, as shown in
figure 3.

We can also generate interesting braids by changing the initial branch of the logarithms.
Figure 4 shows a braid with ρ = 1 (equal intervals between points), but with an extra unit of
winding in Re λca0.

Finally, we note that the closure of a braid becomes a knot or link. We do this graphically
by mapping the central vertical axis of the braid (x, y) = 0 onto a circle; the x direction maps to
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Figure 3. Braid and winding diagram for ρ = 4.3. For this braid, Re�abc(P ) = 8.

the normal direction of the circle, while the y direction maps to the binormal. If W(P ) �= 2nπ ,
then a rotation would also need to be included. This is not the case for the braids of figures 2
and 4; links associated with these braids are shown in figure 5. Both of these are examples of
Brunnian links, where lower-order winding numbers (e.g. λab(P )) all vanish.

5. Conclusions

Usually topological invariants are calculated for a pre-existing object such as a knot or braid.
Here this process is reversed: the topological invariant generates the object. In particular, braid
invariants can be employed as Hamiltonians for particles moving in two dimensions. Spacetime
diagrams of the particle motions display highly braided patterns which optimize the associated
topological invariant (i.e. the Hamiltonian suppresses wasted motions perpendicular to the
gradient of the invariant). We have investigated the Hamiltonian for three-particle motion in
some detail, and have shown it to be completely integrable.

This paper may be contrasted with other methods of generating the geometry of a knot
or braid. For example, minimizing an energy functional [26, 27], or the ratio of tube volume
to tube length [28], can lead to aesthetically pleasing ‘ideal’ knots. The method of braid
generation (and knot generation via closed braids) described here yields similar results, but
operates via a quite different process. Here the topological object grows from initial conditions
under the guidance of a Hamiltonian system. With energy minimization, a pre-existing object
relaxes to a simpler form by dissipating excess energy.
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Figure 4. Braid and winding diagram for ρ = 1 and Re λab(0) = 0, Re λbc(0) = 0 and
Re λca(0) = − 3

2 . For this braid, Re�abc(P ) = 7.

Figure 5. Closed braids associated with figures 2 and 4. The link on the left is an example of the
Borromean rings.
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[25] Aref H, Rott N and Thomann H 1992 Gröbli’s solution of the three vortex problem Annu. Rev. Fluid Mech. 24 1
[26] Moffatt H K 1990 The energy spectrum of knots and links Nature 347 367
[27] Freedman M H and He Z X 1991 Divergence-free fields—energy and asymptotic crossing number Ann. Math.

134 189
[28] Katritch V, Bednar J, Michoud D, Scharein R G, Dubochet J and Stasiak A 1996 Geometry and physics of knots

Nature 384 142


